

 Navigation

 	
 index

 	
 next |

 	django-paypal 0.1.5 documentation

Welcome to django-paypal’s documentation!

Django PayPal is a pluggable application that implements with PayPal Payments
Standard and Payments Pro.

Contents:

	Install

	Overview

	PayPal Payments Standard
	Using PayPal Standard IPN

	Using PayPal Standard PDT

	Using PayPal Standard with Subscriptions

	Using PayPal Standard with Encrypted Buttons

	Using PayPal Payments Pro (WPP)

	Tests

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-paypal 0.1.5 documentation

Install

Install into a virtualenv using pip:

pip install django-paypal

Or using the latest version from GitHub:

pip install git://github.com/spookylukey/django-paypal.git#egg=django-paypal

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-paypal 0.1.5 documentation

Overview

Before diving in, a quick review of PayPal’s payment methods is in order!
PayPal Payments Standard [https://developer.paypal.com/webapps/developer/docs/classic/paypal-payments-standard/integration-guide/wp_standard_overview/]
is the “Buy it Now” buttons you may have seen floating around the
internet. Buyers click on the button and are taken to PayPal’s website where
they can pay for the product.

After this point, you can get notification of the payment using either Payment
Data Transfer (PDT) or Instant Payment Notification (IPN).

For IPN, as soon as PayPal has taken payment details, it sends a message to a
configured endpoint on your site in a separate HTTP request which you must
handle. It will make multiple attempts for the case of connectivity issues. This
method has the disadvantage that the user may arrive back at your site before
your site has been notified about the transaction.

For PDT, PayPal redirects the user back to your website with a transaction ID in
the query string. This has the disadvantage that if there is some kind of
connection issue at this point, you won’t get notification. However, for the
success case, you can be sure that the information about the transaction arrives
at the same time as the users arrives back at your site.

PayPal Payments Pro allows you to accept payments on your website. It contains
two distinct payment flows: Direct Payment allows the user to enter credit card
information on your website and pay on your website. Express Checkout sends the
user over to PayPal to confirm their payment method before redirecting back to
your website for confirmation. PayPal rules state that both methods must be
implemented.

More recently, PayPal have implemented newer APIs, including “PayPal Payments
Pro (Payflow Edition)”. This is not to be confused with the “Classic” PayPal
Payments Pro that is implemented by django-paypal. “Payflow Edition” is not yet
supported by django-paypal.

See also:

	PayPal Payments Standard

	Using PayPal Payments Pro (WPP)

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-paypal 0.1.5 documentation

PayPal Payments Standard

	Using PayPal Standard IPN
	See also

	Using PayPal Standard PDT

	Using PayPal Standard with Subscriptions

	Using PayPal Standard with Encrypted Buttons
	Using PayPal Payments Standard with Encrypted Buttons and Shared Secrets

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-paypal 0.1.5 documentation

 	PayPal Payments Standard

Using PayPal Standard IPN

	Edit settings.py and add paypal.standard.ipn to your INSTALLED_APPS
and PAYPAL_RECEIVER_EMAIL:

settings.py:

#...

INSTALLED_APPS = [
 #...
 'paypal.standard.ipn',
 #...
]

#...
PAYPAL_RECEIVER_EMAIL = "yourpaypalemail@example.com"

For installations on which you want to use the sandbox,
set PAYPAL_TEST to True. Ensure PAYPAL_RECEIVER_EMAIL is set to
your sandbox account email too.

	Update the database

	Create an instance of the PayPalPaymentsForm in the view where you would
like to collect money. Call render on the instance in your template to
write out the HTML.

views.py:

from paypal.standard.forms import PayPalPaymentsForm

def view_that_asks_for_money(request):

 # What you want the button to do.
 paypal_dict = {
 "business": settings.PAYPAL_RECEIVER_EMAIL,
 "amount": "10000000.00",
 "item_name": "name of the item",
 "invoice": "unique-invoice-id",
 "notify_url": "https://www.example.com" + reverse('paypal-ipn'),
 "return_url": "https://www.example.com/your-return-location/",
 "cancel_return": "https://www.example.com/your-cancel-location/",

 }

 # Create the instance.
 form = PayPalPaymentsForm(initial=paypal_dict)
 context = {"form": form}
 return render_to_response("payment.html", context)

For a full list of variables that can be used in paypal_dict, see
PayPal HTML variables documentation” [https://developer.paypal.com/webapps/developer/docs/classic/paypal-payments-standard/integration-guide/Appx_websitestandard_htmlvariables/]

payment.html:

...
<h1>Show me the money!</h1>
<!-- writes out the form tag automatically -->
{{ form.render }}

	When someone uses this button to buy something PayPal makes a HTTP POST to
your “notify_url”. PayPal calls this Instant Payment Notification (IPN).
The view paypal.standard.ipn.views.ipn handles IPN processing. To set the
correct notify_url add the following to your urls.py:

urlpatterns = patterns('',
 (r'^something/paypal/', include('paypal.standard.ipn.urls')),
)

	Whenever an IPN is processed a signal will be sent with the result of the
transaction. Connect the signals to actions to perform the needed operations
when a successful payment is received.

The IPN signals should be imported from paypal.standard.ipn.signals.

There are four signals for basic transactions:

	payment_was_successful

	payment_was_flagged

	payment_was_refunded

	payment_was_reversed

And four signals for subscriptions:

	subscription_cancel - Sent when a subscription is cancelled.

	subscription_eot - Sent when a subscription expires.

	subscription_modify - Sent when a subscription is modified.

	subscription_signup - Sent when a subscription is created.

Several more exist for recurring payments:

	recurring_create - Sent when a recurring payment is created.

	recurring_payment - Sent when a payment is received from a recurring payment.

	recurring_cancel - Sent when a recurring payment is cancelled.

	recurring_suspend - Sent when a recurring payment is suspended.

	recurring_reactivate - Sent when a recurring payment is reactivated.

Connect to these signals and update your data accordingly. Django Signals
Documentation [http://docs.djangoproject.com/en/dev/topics/signals/].

models.py:

from paypal.standard.ipn.signals import payment_was_successful

def show_me_the_money(sender, **kwargs):
 ipn_obj = sender
 # You need to check 'payment_status' of the IPN

 if ipn_obj.payment_status == "Completed":
 # Undertake some action depending upon `ipn_obj`.
 if ipn_obj.custom == "Upgrade all users!":
 Users.objects.update(paid=True)
 else:
 #...

payment_was_successful.connect(show_me_the_money)

The data variables that are return on the IPN object are documented here:

https://developer.paypal.com/webapps/developer/docs/classic/ipn/integration-guide/IPNandPDTVariables/

You need to pay particular attention to payment_status.

	You will also need to implement the return_url and cancel_return views
to handle someone returning from PayPal. Note that these views need
@csrf_exempt applied to them, because PayPal will POST to them, so they
should be custom views that don’t need to handle POSTs otherwise.

For ‘return_url’ you need to cope with the possibility that the IPN has not
yet been received and handled by the IPN listener you implemented (which can
happen rarely), or that there was some kind of error with the IPN.

See also

	Using PayPal Standard with Subscriptions

	Using PayPal Standard with Encrypted Buttons

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-paypal 0.1.5 documentation

 	PayPal Payments Standard

Using PayPal Standard PDT

Paypal Payment Data Transfer (PDT) allows you to display transaction details to
a customer immediately on return to your site unlike PayPal IPN which may take
some seconds. You will need to enable PDT in your PayPal account to use it [https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/howto_html_paymentdatatransfer].

However, PDT also has the disadvantage that you only get one chance to handle
the notification - if there is a connection error for your user, the
notification will never arrive at your site. For this reason, using PDT with
django-paypal is not as well supported as IPN.

To use PDT:

	Edit settings.py and add paypal.standard.pdt to your INSTALLED_APPS. Also set PAYPAL_IDENTITY_TOKEN - you can find the correct value of this setting from the PayPal website:

settings.py:

#...
INSTALLED_APPS = [
 #...
 'paypal.standard.pdt',
 #...
]

#...

PAYPAL_IDENTITY_TOKEN = "xxx"

For installations on which you want to use the sandbox,
set PAYPAL_TEST to True. Ensure PAYPAL_RECEIVER_EMAIL is set to
your sandbox account email too.

	Update the database

	Create a view that uses PayPalPaymentsForm just like in Using PayPal Standard IPN.

	After someone uses this button to buy something PayPal will return the user
to your site at your return_url with some extra GET parameters.

The view paypal.standard.pdt.views.pdt handles PDT processing and renders
a simple template. It can be used as follows:

Add the following to your urls.py:

...
urlpatterns = patterns('',
 (r'^paypal/pdt/', include('paypal.standard.pdt.urls')),
 ...
)

Then specify the return_url to use this URL.

More than likely, however, you will want to write a custom view that
calls paypal.standard.pdt.views.process_pdt. This function returns
a tuple containing (PDT object, flag), where the flag is True
if verification failed.

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-paypal 0.1.5 documentation

 	PayPal Payments Standard

Using PayPal Standard with Subscriptions

For subscription actions, you’ll need to add a parameter to tell it to use the
subscription buttons and the command, plus any subscription-specific settings:

views.py:

 paypal_dict = {
 "cmd": "_xclick-subscriptions",
 "business": "your_account@paypal",
 "a3": "9.99", # monthly price
 "p3": 1, # duration of each unit (depends on unit)
 "t3": "M", # duration unit ("M for Month")
 "src": "1", # make payments recur
 "sra": "1", # reattempt payment on payment error
 "no_note": "1", # remove extra notes (optional)
 "item_name": "my cool subscription",
 "notify_url": "http://www.example.com/your-ipn-location/",
 "return_url": "http://www.example.com/your-return-location/",
 "cancel_return": "http://www.example.com/your-cancel-location/",
}

Create the instance.
form = PayPalPaymentsForm(initial=paypal_dict, button_type="subscribe")

Output the button.
form.render()

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-paypal 0.1.5 documentation

 	PayPal Payments Standard

Using PayPal Standard with Encrypted Buttons

Use this method to encrypt your button so sneaky gits don’t try to hack
it. Thanks to Jon Atkinson [http://jonatkinson.co.uk/] for the
tutorial [http://jonatkinson.co.uk/paypal-encrypted-buttons-django/].

	Encrypted buttons require the M2Crypto library:

pip install M2Crypto

	Encrypted buttons require certificates. Create a private key:

openssl genrsa -out paypal.pem 1024

	Create a public key:

openssl req -new -key paypal.pem -x509 -days 365 -out pubpaypal.pem

	Upload your public key to the paypal website (sandbox or live).

https://www.paypal.com/us/cgi-bin/webscr?cmd=_profile-website-cert

https://www.sandbox.paypal.com/us/cgi-bin/webscr?cmd=_profile-website-cert

	Copy your cert id - you’ll need it in two steps. It’s on the screen where
you uploaded your public key.

	Download PayPal’s public certificate - it’s also on that screen.

	Edit your settings.py to include cert information:

PAYPAL_PRIVATE_CERT = '/path/to/paypal.pem'
PAYPAL_PUBLIC_CERT = '/path/to/pubpaypal.pem'
PAYPAL_CERT = '/path/to/paypal_cert.pem'
PAYPAL_CERT_ID = 'get-from-paypal-website'

	Swap out your unencrypted button for a PayPalEncryptedPaymentsForm:

In views.py:

from paypal.standard.forms import PayPalEncryptedPaymentsForm

def view_that_asks_for_money(request):
 ...
 # Create the instance.
 form = PayPalPaymentsForm(initial=paypal_dict)
 # Works just like before!
 form.render()

Using PayPal Payments Standard with Encrypted Buttons and Shared Secrets

This method uses Shared secrets instead of IPN postback to verify that transactions
are legit. PayPal recommends you should use Shared Secrets if:

	You are not using a shared website hosting service.

	You have enabled SSL on your web server.

	You are using Encrypted Website Payments.

	You use the notify_url variable on each individual payment transaction.

Use postbacks for validation if:

	You rely on a shared website hosting service

	You do not have SSL enabled on your web server

	Swap out your button for a PayPalSharedSecretEncryptedPaymentsForm:

In views.py:

from paypal.standard.forms import PayPalSharedSecretEncryptedPaymentsForm

def view_that_asks_for_money(request):
 ...
 # Create the instance.
 form = PayPalSharedSecretEncryptedPaymentsForm(initial=paypal_dict)
 # Works just like before!
 form.render()

	Verify that your IPN endpoint is running on SSL - request.is_secure() should return True!

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-paypal 0.1.5 documentation

Using PayPal Payments Pro (WPP)

PayPal Payments Pro (or “Website Payments Pro”) is a more awesome version of
PayPal that lets you accept payments on your site. This is now documented by
PayPal as a Classic API [https://developer.paypal.com/webapps/developer/docs/classic/products/] and
should not be confused with the “PayPal Payments Pro (Payflow Edition)” which is
a newer API.

The PayPal Payments Pro solution reuses code from paypal.standard so you’ll
need to include both apps. django-paypal makes the whole process incredibly easy
to use through the provided PayPalPro class.

	Obtain PayPal Pro API credentials: login to PayPal, click My Account,
Profile, Request API credentials, Set up PayPal API credentials and
permissions, View API Signature.

	Edit settings.py and add paypal.standard and paypal.pro to your
INSTALLED_APPS and put in your PayPal Pro API credentials.

INSTALLED_APPS = [
 # ..
 'paypal.standard',
 'paypal.pro',
]
PAYPAL_TEST = True
PAYPAL_WPP_USER = "???"
PAYPAL_WPP_PASSWORD = "???"
PAYPAL_WPP_SIGNATURE = "???"

	Update the database

	Write a wrapper view for paypal.pro.views.PayPalPro:

In views.py:

from paypal.pro.views import PayPalPro

def buy_my_item(request):
 item = {"amt": "10.00", # amount to charge for item
 "inv": "inventory", # unique tracking variable paypal
 "custom": "tracking", # custom tracking variable for you
 "cancelurl": "http://...", # Express checkout cancel url
 "returnurl": "http://..."} # Express checkout return url

 kw = {"item": item, # what you're selling
 "payment_template": "payment.html", # template name for payment
 "confirm_template": "confirmation.html", # template name for confirmation
 "success_url": "/success/"} # redirect location after success

 ppp = PayPalPro(**kw)
 return ppp(request)

	Create templates for payment and confirmation. By default both templates are
populated with the context variable form which contains either a
PaymentForm or a Confirmation form.

payment.html:

<h1>Show me the money</h1>
<form method="post" action="">
 {{ form }}
 <input type="submit" value="Pay Up">
</form>

confirmation.html:

<!-- confirmation.html -->
<h1>Are you sure you want to buy this thing?</h1>
<form method="post" action="">
 {{ form }}
 <input type="submit" value="Yes I Yams">
</form>

	Add your view to urls.py, and add the IPN endpoint to receive callbacks
from PayPal:

urlpatterns = ('',
 ...
 (r'^payment-url/$', 'myproject.views.buy_my_item')
 (r'^some/obscure/name/', include('paypal.standard.ipn.urls')),
)

	Connect to the provided signals in paypal.pro.signals and have them do something useful:

	payment_was_successful

	payment_was_flagged

	Profit.

Alternatively, if you want to get down to the nitty gritty and perform some
more advanced operations with Payments Pro, use the paypal.pro.helpers.PayPalWPP class directly.

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	django-paypal 0.1.5 documentation

Tests

To run the django-paypal tests:

	Download the source from GitHub [https://github.com/spookylukey/django-paypal] or your fork.

	Create a virtualenv for the django-paypal project.

	Install tox:

pip install tox

	Run tox:

tox

This will run all the tests on all supported combinations of Django/Python.

 Copyright 2014.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	django-paypal 0.1.5 documentation

Index

 C
 | D
 | G
 | M
 | P
 | S
 | U

C

 	

 	createBillingAgreement() (paypal.pro.helpers.PayPalWPP method)

 	

 	createRecurringPaymentsProfile() (paypal.pro.helpers.PayPalWPP method)

D

 	

 	doDirectPayment() (paypal.pro.helpers.PayPalWPP method)

 	doExpressCheckoutPayment() (paypal.pro.helpers.PayPalWPP method)

 	

 	doReferenceTransaction() (paypal.pro.helpers.PayPalWPP method)

G

 	

 	getExpressCheckoutDetails() (paypal.pro.helpers.PayPalWPP method)

 	

 	getTransactionDetails() (paypal.pro.helpers.PayPalWPP method)

M

 	

 	manageRecurringPaymentsProfileStatus() (paypal.pro.helpers.PayPalWPP method)

P

 	

 	PayPalWPP (class in paypal.pro.helpers)

S

 	

 	setExpressCheckout() (paypal.pro.helpers.PayPalWPP method)

U

 	

 	updateRecurringPaymentsProfile() (paypal.pro.helpers.PayPalWPP method)

 Copyright 2014.
 Created using Sphinx 1.2.2.

 pro/detail.html

 Navigation

 		
 index

 		django-paypal 0.1.5 documentation »

		
class paypal.pro.helpers.PayPalWPP

		
		
createBillingAgreement()

		The CreateBillingAgreement API operation creates a billing agreement with
a PayPal account holder. CreateBillingAgreement is only valid for
reference transactions.

from paypal.pro.helpers import PayPalWPP

def create_billing_agreement_view(request):
 wpp = PayPalWPP(request)
 token = request.GET.get('token')
 wpp.createBillingAgreement({'token': token})

		
createRecurringPaymentsProfile()

		The CreateRecurringPaymentsProfile API operation creates a recurring
payments profile. You must invoke the CreateRecurringPaymentsProfile API
operation for each profile you want to create. The API operation creates a
profile and an associated billing agreement.

Note: There is a one-to-one correspondence between billing agreements
and recurring payments profiles. To associate a recurring payments profile
with its billing agreement, you must ensure that the description in the
recurring payments profile matches the description of a billing
agreement. For version 54.0 and later, use SetExpressCheckout to initiate
creation of a billing agreement.

		
doDirectPayment()

		The DoDirectPayment API Operation enables you to process a credit card
payment.

		
doExpressCheckoutPayment()

		The DoExpressCheckoutPayment API operation completes an Express Checkout
transaction. If you set up a billing agreement in your SetExpressCheckout
API call, the billing agreement is created when you call the
DoExpressCheckoutPayment API operation.

The DoExpressCheckoutPayment API operation completes an Express Checkout
transaction. If you set up a billing agreement in your
SetExpressCheckout API call, the billing agreement is created when you
call the DoExpressCheckoutPayment API operation.

		
doReferenceTransaction()

		The DoReferenceTransaction API operation processes a payment from a
buyer’s account, which is identified by a previous transaction.

from paypal.pro.helpers import PayPalWPP

def do_reference_transaction_view(request):
 wpp = PayPalWPP(request)
 reference_id = request.POST.get('reference_id')
 amount = request.POST.get('amount')
 wpp.doReferenceTransaction({'referenceid': reference_id, 'amt': amount})

		
getExpressCheckoutDetails()

		The GetExpressCheckoutDetails API operation obtains information about a
specific Express Checkout transaction.

		
getTransactionDetails()

		The GetTransactionDetails API operation obtains information about a
specific transaction.

		
manageRecurringPaymentsProfileStatus()

		The ManageRecurringPaymentsProfileStatus API operation cancels, suspends,
or reactivates a recurring payments profile.

		
setExpressCheckout()

		The SetExpressCheckout API operation initiates an Express Checkout
transaction.

		
updateRecurringPaymentsProfile()

		The UpdateRecurringPaymentsProfile API operation updates a recurring
payments profile.

 © Copyright 2014.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

_static/comment-close.png

_static/comment-bright.png

updatedb.html

 Navigation

 		
 index

 		django-paypal 0.1.5 documentation »

Update the database

django-paypal uses South for migrations for Django < 1.7, and the built in
Django migrations framework for Django >= 1.7.

To update your database:

		For Django < 1.7:

		Ensure South is installed if it isn’t already:

		Do:

pip install 'South>=1.0.1'

		Add ‘south’ to your INSTALLED_APPS setting.

		Run the following to install South tables:

./manage.py syncdb

		Then for each time you install or upgrade django-paypal, run:

./manage.py migrate

		For Django >= 1.7, do:

./manage.py migrate

Upgrading from previous versions

If you using Django < 1.7 and are upgrading from a version that wasn’t using
South, you will have to use --fake - see
http://south.readthedocs.org/en/latest/commands.html?highlight=fake

It will probably look something like:

./manage.py migrate ipn --fake --initial
./manage.py migrate pdt --fake --initial
./manage.py migrate pro --fake --initial

depending on what apps you have installed.

Please also see upgrade notes in the CHANGES file: https://github.com/spookylukey/django-paypal/blob/master/CHANGES.rst

Upgrading to Django 1.7

The recommended upgrade procedure is:

		first upgrade django-paypal to the latest version and run migrations as above.

		then upgrade Django to 1.7, and run the following as appropriate for your
situation:

./manage.py migrate ipn --fake
./manage.py migrate pdt --fake
./manage.py migrate pro --fake

In this way, you can avoid running equivalent migrations twice (the South versions
and the Django built-in versions).

 © Copyright 2014.
 Created using Sphinx 1.2.2.

_static/file.png

_static/up.png

search.html

 Navigation

 		
 index

 		django-paypal 0.1.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

