

Welcome to django-paypal’s documentation!

Django PayPal is a pluggable application that implements with PayPal Payments
Standard and Payments Pro.

Note

These docs are for django-paypal 1.1.2 - please ensure that corresponds
to the version you are using!

 Install

Install

Install into a virtualenv using pip:

pip install django-paypal

Or using the latest version from GitHub:

pip install git://github.com/spookylukey/django-paypal.git#egg=django-paypal

If you are using Django < 1.11, you should use django-paypal 0.5.x and refer to
its documentation.

You will also need to edit your settings.py, but the specifics depend on
whether you are using IPN/PDT/Pro.

In addition, you may need to take some precautions regarding REMOTE_ADDR. In
all cases the user’s IP address is recorded when payments are recorded, since
this value can be useful in some cases. This value is taken from
request.META['REMOTE_ADDR']. In some setups, however, it is possible that
this value is incorrect, or may not even validate as an IP address. If it is not
a valid IP address, then saving of IPN/PDT/NVP data will fail with a validation
error.

Due to the many different ways that systems can be configured, with different
proxies etc., correcting REMOTE_ADDR is outside the scope of django-paypal.
You are advised to use a custom middleware or a solution like django-xff [https://pypi.python.org/pypi/django-xff/] to ensure that
request.META['REMOTE_ADDR'] is correct or at least a valid IP address.

 Overview

Overview

Before diving in, a quick review of PayPal’s payment methods is in order!
PayPal Payments Standard [https://developer.paypal.com/webapps/developer/docs/classic/paypal-payments-standard/integration-guide/wp_standard_overview/]
is the “Buy it Now” buttons you may have seen floating around the
internet. Buyers click on the button and are taken to PayPal’s website where
they can pay for the product.

After this point, you can get notification of the payment using either Payment
Data Transfer (PDT) or Instant Payment Notification (IPN).

For IPN, as soon as PayPal has taken payment details, it sends a message to a
configured endpoint on your site in a separate HTTP request which you must
handle. It will make multiple attempts for the case of connectivity issues. This
method has the disadvantage that the user may arrive back at your site before
your site has been notified about the transaction.

For PDT, PayPal redirects the user back to your website with a transaction ID in
the query string. This has the disadvantage that if there is some kind of
connection issue at this point, you won’t get notification. However, for the
success case, you can be sure that the information about the transaction arrives
at the same time as the users arrives back at your site.

PayPal Payments Pro allows you to accept payments on your website. It contains
two distinct payment flows: Direct Payment allows the user to enter credit card
information on your website and pay on your website. Express Checkout sends the
user over to PayPal to confirm their payment method before redirecting back to
your website for confirmation. PayPal rules state that both methods must be
implemented.

More recently, PayPal have implemented newer APIs, including “PayPal Payments
Pro (Payflow Edition)”. This is not to be confused with the “Classic” PayPal
Payments Pro that is implemented by django-paypal. “Payflow Edition” is not yet
supported by django-paypal.

See also:

	PayPal Payments Standard

	Using Website Payments Pro

 PayPal Payments Standard

PayPal Payments Standard

	Using PayPal Standard IPN
	Testing

	Simulator testing

	See also

	Using PayPal Standard PDT

	IPN/PDT variables

	Using PayPal Standard with Subscriptions

	Using PayPal Standard with Encrypted Buttons
	Using PayPal Payments Standard with Encrypted Buttons and Shared Secrets

 Using PayPal Standard IPN

Using PayPal Standard IPN

	Edit settings.py and add paypal.standard.ipn to your INSTALLED_APPS:

settings.py:

#...

INSTALLED_APPS = [
 #...
 'paypal.standard.ipn',
 #...
]

For installations on which you want to use the sandbox,
set PAYPAL_TEST to True.

PAYPAL_TEST = True

	Update the database

	Create an instance of the PayPalPaymentsForm in the view where you would
like to collect money.

You must fill a dictionary with the information required to complete the
payment, and pass it through the initial parameter when creating the
PayPalPaymentsForm.

Please note: This form is not used like a normal Django form that posts
back to a Django view. Rather it is a POST form that has a single button
which sends all the data to PayPal. You simply need to call render
on the instance in your template to write out the HTML, which includes
the <form> tag with the correct endpoint.

views.py:

For a full list of variables that can be used in paypal_dict, see
PayPal HTML variables documentation [https://developer.paypal.com/webapps/developer/docs/classic/paypal-payments-standard/integration-guide/Appx_websitestandard_htmlvariables/].

Note

The names of these variables are not the same as the values
returned on the IPN object.

 Using PayPal Standard PDT

Using PayPal Standard PDT

Paypal Payment Data Transfer (PDT) allows you to display transaction details to
a customer immediately on return to your site unlike PayPal IPN which may take
some seconds. You will need to enable PDT in your PayPal account to use it [https://developer.paypal.com/webapps/developer/docs/classic/products/payment-data-transfer/].

However, PDT also has the disadvantage that you only get one chance to handle
the notification - if there is a connection error for your user, the
notification will never arrive at your site. For this reason, using PDT with
django-paypal is not as well supported as IPN.

To use PDT:

	Edit settings.py and add paypal.standard.pdt to your
INSTALLED_APPS. Also set PAYPAL_IDENTITY_TOKEN - you can find the
correct value of this setting from the PayPal website:

settings.py:

#...
INSTALLED_APPS = [
 #...
 'paypal.standard.pdt',
 #...
]

#...

PAYPAL_IDENTITY_TOKEN = "xxx"

For installations on which you want to use the sandbox,
set PAYPAL_TEST to True. While testing, ensure that when you create
the PayPalPaymentsForm your receiver email (business parameter) is set to
your sandbox account email too.

	Update the database

	Create a view that uses PayPalPaymentsForm just like in Using PayPal Standard IPN.

	After someone uses this button to buy something PayPal will return the user
to your site at your return_url with some extra GET parameters.

You will want to write a custom view that
calls paypal.standard.pdt.views.process_pdt. This function returns
a tuple containing (PDT object, flag), where the flag is True
if verification failed.

Add the following to your urls.py:

from django.urls import path, include
...
urlpatterns = [
 path('your_return_url/', your_pdt_return_url_view, name="pdt_return_url"),
 ...
]

And then create a view that uses the process_pdt helper function:

@require_GET
def your_pdt_return_url_view(request):
 pdt_obj, failed = process_pdt(request)
 context = {"failed": failed, "pdt_obj": pdt_obj}
 if not failed:

 # WARNING!
 # Check that the receiver email is the same we previously
 # set on the business field request. (The user could tamper
 # with those fields on payment form before send it to PayPal)

 if pdt_obj.receiver_email == "receiver_email@example.com":

 # ALSO: for the same reason, you need to check the amount
 # received etc. are all what you expect.

 # Do whatever action is needed, then:
 return render(request, 'my_valid_payment_template', context)
 return render(request, 'my_non_valid_payment_template', context)

See the IPN/PDT variables documentation for information about attributes on
the PDT object that you can use.

 IPN/PDT variables

IPN/PDT variables

The data variables that are returned on the IPN object are documented here:

https://developer.paypal.com/docs/api-basics/notifications/ipn/IPNandPDTVariables/

Note

The names of these data variables are not the same as the values that
you pass to PayPal [https://developer.paypal.com/webapps/developer/docs/classic/paypal-payments-standard/integration-guide/Appx_websitestandard_htmlvariables/] -
ensure you are looking at the right list!

 Using PayPal Standard with Subscriptions

Using PayPal Standard with Subscriptions

For subscription actions, you’ll need to add a parameter to tell it to use the
subscription buttons and the command, plus any subscription-specific settings:

views.py:

 paypal_dict = {
 "cmd": "_xclick-subscriptions",
 "business": 'receiver_email@example.com',
 "a3": "9.99", # monthly price
 "p3": 1, # duration of each unit (depends on unit)
 "t3": "M", # duration unit ("M for Month")
 "src": "1", # make payments recur
 "sra": "1", # reattempt payment on payment error
 "no_note": "1", # remove extra notes (optional)
 "item_name": "my cool subscription",
 "notify_url": "http://www.example.com/your-ipn-location/",
 "return": "http://www.example.com/your-return-location/",
 "cancel_return": "http://www.example.com/your-cancel-location/",
}

Create the instance.
form = PayPalPaymentsForm(initial=paypal_dict, button_type="subscribe")

Output the button.
form.render()

See PayPal Subscribe button docs [https://developer.paypal.com/docs/paypal-payments-standard/integration-guide/subscribe-step-1/].

 Using PayPal Standard with Encrypted Buttons

Using PayPal Standard with Encrypted Buttons

Use this method to encrypt your button so values in the form can’t be tampered
with. Thanks to Jon Atkinson [http://jonatkinson.co.uk/] for the tutorial [http://jonatkinson.co.uk/paypal-encrypted-buttons-django/].

	Encrypted buttons require the M2Crypto library:

pip install M2Crypto

	Encrypted buttons require certificates. Create a private key:

openssl genrsa -out paypal_private.pem 1024

	Create a public key:

openssl req -new -key paypal_private.pem -x509 -days 365 -out paypal_public.pem

	Upload your public key to the paypal website (sandbox or live).

https://www.paypal.com/us/cgi-bin/webscr?cmd=_profile-website-cert

https://www.sandbox.paypal.com/us/cgi-bin/webscr?cmd=_profile-website-cert

	Copy your cert id - you’ll need it in two steps. It’s on the screen where
you uploaded your public key.

	Download PayPal’s public certificate - it’s also on that screen.

	Edit your settings.py to include cert information:

PAYPAL_PRIVATE_CERT = '/path/to/paypal_private.pem'
PAYPAL_PUBLIC_CERT = '/path/to/paypal_public.pem'
PAYPAL_CERT = '/path/to/paypal_cert.pem'
PAYPAL_CERT_ID = 'get-from-paypal-website'

	Swap out your unencrypted button for a PayPalEncryptedPaymentsForm:

In views.py:

from paypal.standard.forms import PayPalEncryptedPaymentsForm

def view_that_asks_for_money(request):
 ...
 # Create the instance.
 form = PayPalEncryptedPaymentsForm(initial=paypal_dict)
 # Works just like before!
 form.render()

	If you need to use multiple certificates, you can pass
the arguments directly to the PayPalEncryptedPaymentsForm
as below:

In views.py:

from paypal.standard.forms import PayPalEncryptedPaymentsForm

def view_that_asks_for_money(request):
 ...
 # Paypal Certificate Information
 paypal_private_cert = '/path/to/another/paypal_private.pem'
 paypal_public_cert = '/path/to/another/paypal_public.pem'
 paypal_cert = '/path/to/another/paypal_cert.pem'
 paypal_cert_id = 'another-paypal-id'
 # Create the instance.
 form = PayPalEncryptedPaymentsForm(initial=paypal_dict,
 private_cert=paypal_private_cert,
 public_cert=paypal_public_cert,
 paypal_cert=paypal_cert,
 cert_id=paypal_cert_id)
 ...

Using PayPal Payments Standard with Encrypted Buttons and Shared Secrets

This method uses Shared secrets instead of IPN postback to verify that transactions
are legit. PayPal recommends you should use Shared Secrets if:

	You are not using a shared website hosting service.

	You have enabled SSL on your web server.

	You are using Encrypted Website Payments.

	You use the notify_url variable on each individual payment transaction.

Use postbacks for validation if:

	You rely on a shared website hosting service

	You do not have SSL enabled on your web server

	Swap out your button for a PayPalSharedSecretEncryptedPaymentsForm:

In views.py:

from paypal.standard.forms import PayPalSharedSecretEncryptedPaymentsForm

def view_that_asks_for_money(request):
 ...
 # Create the instance.
 form = PayPalSharedSecretEncryptedPaymentsForm(initial=paypal_dict)
 # Works just like before!
 form.render()

	Verify that your IPN endpoint is running on SSL - request.is_secure() should return True!

 Using Website Payments Pro

Using Website Payments Pro

	Website Payments Pro models and helpers

Website Payments Pro [https://developer.paypal.com/docs/classic/products/website-payments-pro/] is
a version of PayPal that lets you accept payments on your site using server side
calls. The branding of this is confusing. It was branded as “Paypal Payments
Pro” at one point. Later “PayPal Payments Pro (Payflow Edition)” was introduced,
and that was later renamed to “PayPal Payments Pro”, while the old “PayPal
Payments Pro” was rebranded to “Website Payments Pro”. It is this older API (not
Payflow) that is supported by django-paypal and documented here.

The PayPal Website Payments Pro solution reuses code from paypal.standard so
you’ll need to include both apps. django-paypal makes the whole process
incredibly easy to use through the provided PayPalPro class.

	Obtain PayPal Pro API credentials: login to PayPal, click My Account,
Profile, Request API credentials, Set up PayPal API credentials and
permissions, View API Signature.

	Edit settings.py and add paypal.standard and paypal.pro to your
INSTALLED_APPS and put in your PayPal Pro API credentials.

INSTALLED_APPS = [
 # ..
 'paypal.standard',
 'paypal.pro',
]
PAYPAL_TEST = True
PAYPAL_WPP_USER = "???"
PAYPAL_WPP_PASSWORD = "???"
PAYPAL_WPP_SIGNATURE = "???"

	Update the database

	Write a wrapper view for paypal.pro.views.PayPalPro:

In views.py:

from paypal.pro.views import PayPalPro

def nvp_handler(nvp):
 # This is passed a PayPalNVP object when payment succeeds.
 # This should do something useful!
 pass

def buy_my_item(request):
 item = {"paymentrequest_0_amt": "10.00", # amount to charge for item
 "inv": "inventory", # unique tracking variable paypal
 "custom": "tracking", # custom tracking variable for you
 "cancelurl": "http://...", # Express checkout cancel url
 "returnurl": "http://..."} # Express checkout return url

 ppp = PayPalPro(
 item=item, # what you're selling
 payment_template="payment.html", # template name for payment
 confirm_template="confirmation.html", # template name for confirmation
 success_url="/success/", # redirect location after success
 nvp_handler=nvp_handler)
 return ppp(request)

	Create templates for payment and confirmation. By default both templates are
populated with the context variable form which contains either a
PaymentForm or a Confirmation form.

payment.html:

<h1>Show me the money</h1>
<form method="post" action="">
 {{ form }}
 <input type="submit" value="Pay Up">
</form>

confirmation.html:

<!-- confirmation.html -->
<h1>Are you sure you want to buy this thing?</h1>
<form method="post" action="">
 {{ form }}
 <input type="submit" value="Yes I Yams">
</form>

	Add your view to urls.py, and add the IPN endpoint to receive callbacks
from PayPal:

from django.urls import path, include

from myproject import views

urlpatterns = [
 ...
 path('payment-url/', views.buy_my_item),
 path('paypal/', include('paypal.standard.ipn.urls')),
]

	Profit.

Alternatively, if you want to get down to the nitty gritty and perform some
more advanced operations with Payments Pro, use the paypal.pro.helpers.PayPalWPP class directly.

If you are testing locally using the WPP sandbox and are having SSL
problems, please see issue 145 [https://github.com/spookylukey/django-paypal/issues/145].

 Website Payments Pro models and helpers

Website Payments Pro models and helpers

	
class paypal.pro.helpers.PayPalWPP

	This class wraps the PayPal classic APIs, and sends data using Name-Value
Pairs (NVP). The methods all take a params dictionary, the contents of
which depend on the API being called. All parameter keys should be passed as
lowercase values (unless otherwise specified), not the mixed case/upper case
that is shown in PayPal docs.

For API parameters, see the PayPal docs for more information:

	Express Checkout APIs [https://developer.paypal.com/docs/classic/api/]

The method calls all return a paypal.pro.models.PayPalNVP object on
success. If an API call does not return ack=Success or
ack=SuccessWithWarning, a PayPalFailure exception is raised. The NVP
object is available as an attribute named nvp on this exception object.

	
__init__(request=None, params=BASE_PARAMS)

	Initialize the instance using an optional Django HTTP request object, and
an optional parameter dictionary which should contain the keys USER,
PWD, SIGNATURE and VERSION. If the parameter dictionary is not
supplied, these parameters will be taken from settings
PAYPAL_WPP_USER, PAYPAL_WPP_PASSWORD, PAYPAL_WPP_SIGNATURE and
the builtin version number.

	
createBillingAgreement()

	The CreateBillingAgreement API operation creates a billing agreement with
a PayPal account holder. CreateBillingAgreement is only valid for
reference transactions.

from paypal.pro.helpers import PayPalWPP

def create_billing_agreement_view(request):
 wpp = PayPalWPP(request)
 token = request.GET.get('token')
 wpp.createBillingAgreement({'token': token})

	
createRecurringPaymentsProfile()

	The CreateRecurringPaymentsProfile API operation creates a recurring
payments profile. You must invoke the CreateRecurringPaymentsProfile API
operation for each profile you want to create. The API operation creates a
profile and an associated billing agreement.

Note: There is a one-to-one correspondence between billing agreements
and recurring payments profiles. To associate a recurring payments profile
with its billing agreement, you must ensure that the description in the
recurring payments profile matches the description of a billing
agreement. For version 54.0 and later, use SetExpressCheckout to initiate
creation of a billing agreement.

	
doDirectPayment()

	The DoDirectPayment API Operation enables you to process a credit card
payment.

	
doExpressCheckoutPayment()

	The DoExpressCheckoutPayment API operation completes an Express Checkout
transaction. If you set up a billing agreement in your SetExpressCheckout
API call, the billing agreement is created when you call the
DoExpressCheckoutPayment API operation.

The DoExpressCheckoutPayment API operation completes an Express Checkout
transaction. If you set up a billing agreement in your
SetExpressCheckout API call, the billing agreement is created when you
call the DoExpressCheckoutPayment API operation.

	
doReferenceTransaction()

	The DoReferenceTransaction API operation processes a payment from a
buyer’s account, which is identified by a previous transaction.

from paypal.pro.helpers import PayPalWPP

def do_reference_transaction_view(request):
 wpp = PayPalWPP(request)
 reference_id = request.POST.get('reference_id')
 amount = request.POST.get('amount')
 wpp.doReferenceTransaction({'referenceid': reference_id, 'amt': amount})

	
getExpressCheckoutDetails()

	The GetExpressCheckoutDetails API operation obtains information about a
specific Express Checkout transaction.

	
getTransactionDetails()

	The GetTransactionDetails API operation obtains information about a
specific transaction.

	
manageRecurringPaymentsProfileStatus()

	The ManageRecurringPaymentsProfileStatus API operation cancels, suspends,
or reactivates a recurring payments profile.

	
setExpressCheckout()

	The SetExpressCheckout API operation initiates an Express Checkout
transaction. Returns an PayPalNVP object that has the token saved
in the .token attribute.

This token can be converted into a URL to redirect to using the helper
function express_endpoint_for_token in this module.

See the SetExpressCheckout docs [https://developer.paypal.com/docs/classic/api/merchant/SetExpressCheckout_API_Operation_NVP/]

	
updateRecurringPaymentsProfile()

	The UpdateRecurringPaymentsProfile API operation updates a recurring
payments profile.

	
paypal.pro.helpers.express_endpoint_for_token(token, commit=False)

	Returns the PayPal Express Checkout endpoint for a token. Pass
commit=True if you will not prompt for confirmation when the user
returns to your site.

	
class paypal.pro.models.PayPalNVP

	This stores the response returned by PayPal for any of the API calls above.

It has fields for all the common values. For other values, you can access
response_dict which is a dictionary-like object containing everything
PayPal returned.

 Tests

Tests

To run the django-paypal tests:

	Download the source from GitHub [https://github.com/spookylukey/django-paypal] or your fork.

	Create a virtualenv for the django-paypal project.

	Install tox:

pip install tox

	Run tox:

tox

This will run all the tests on all supported combinations of Django/Python.

	To run tests just in a single Python environment, do this in your venv:

pip install -e .
pip install -r requirements-test.txt
./runtests.py

	If you’re testing on Linux, due to m2crypto dependencies you’ll probably need various
development header packages installed, plus swig tool.

	If you’re testing on a Mac, then, as m2crypto uses openssl, the command line should be:

env LDFLAGS=”-L”$(brew –prefix openssl)”/lib” CFLAGS=”-I”$(brew –prefix openssl)”/include” SWIG_FEATURES=”-cpperraswarn -includeall -I”$(brew –prefix openssl)”/include” tox

 Release notes

Release notes

Version 1.1.2 (2021-12-13)

	Fixed Django 4.0 support

Version 1.1.1 (2021-04-08)

	Corrected PayPal URL used in IPN/PDT forms. This is a correction of the fix in
1.1 for POSTBACK_ENDPOINT, which wrongly changed both the IPN postback URL and
the PayPal login URL. The fix introduces a pair of new settings (LOGIN_URL and
SANDBOX_LOGIN_URL). The fix also changes the (undocumented) get_endpoint
method on the PayPalPaymentsForm to get_login_url(), in case you are
overriding that method.

Version 1.1 (2021-03-14)

	Fix PayPalSharedSecretEncryptedPaymentsForm in Python 3 - thanks Emilio Moretti

	Dropped Python 3.4 support

	Fixed some bugs with CreditCard.get_type() due to bad regexes

	Fixed a bunch of warnings emitted under modern Django

	Changed default values of POSTBACK_ENDPOINT and SANDBOX_POSTBACK_ENDPOINT to ones
now recommended by PayPal.

Version 1.0 (2019-03-22)

	Dropped support for versions of Django before 1.11

	Encrypted button corrections

	.encode() the encrypted result to avoid b’’ decoration under Python 3

	Fix the encrypted button examples in the documentation to use the encrypted form

	Fixed issue #206 - DB migration required by Django 2.1

	Support for almost all deprecated features removed, including:

	Signals deprecated in v0.2 (see notes below)

	Not passing nvp_handler to PayPalPro (see notes under 0.2)

	Using "amt" parameter with SetExpressCheckout and
DoExpressCheckoutPayment (see notes under 0.1.4 below)

	Settings deprecated in v0.4

	setCustomerBillingAgreement (pre 0.1.3 feature)

	PAYPAL_RECEIVER_EMAIL (see notes under 0.3)

	pdt view (see notes under 0.3)

	sandbox method on forms (see notes under 0.2)

Version 0.5.0

	Dropped official support for Python 3.3

	Support for Django 2.0

	Fixed bug with IPv6 addresses (thanks @alexcrawley)

	Tidy up and update PayPalPaymentsForm. Specifically:

	Where possible, remove explicit fields, leaving them to be handled by
__init__(), which creates fields as required from the contents of initial.

	Deprecate field return_url - use field return instead. PayPal expects field
return, but Python’s return keyword meant it wasn’t possible to set that field in
the class’s definition. Later, code in __init__ was added to handle any value in initial, in
particular initial['return']. As the work around which renamed ‘return’ to ‘return_url’
is not necessary, it is now being deprecated. To maintain backwards compatibility
initial[‘return_url’] is remapped to initial[‘return’], with a deprecation warning.

Thanks @JonathanRoach

	Add cmd choices for _xclick-auto-billing and _xclick-payment-plan.

Version 0.4.1

	Added forgotten docs file

Version 0.4.0

	Cleaned up and documented all settings related to button images. Specifically:

	The default images have been updated to recent ones. This is backwards
incompatible if you were relying on the previous (very old) image and had
not set PAYPAL_IMAGE in your settings.

	Removed separate settings for sandbox mode - these only meant more work when
configuring, and production looked different from sandbox by default. This
is backwards incompatible, but only affects development mode.

	Names of settings made clearer. The new names are:

	PAYPAL_BUY_BUTTON_IMAGE (was: PAYPAL_IMAGE)

	PAYPAL_DONATION_BUTTON_IMAGE (was: PAYPAL_DONATION_IMAGE)

	PAYPAL_SUBSCRIPTION_BUTTON_IMAGE (was: PAYPAL_SUBSCRIPTION_IMAGE)

Version 0.3.6

	Version bump due to messed up version numbers in previous release.

Version 0.3.4

	Use multi certificates with PaypalEncryptedPaymentsForm

	Fixed issue #166 - regression from 0.2.7 when using USE_TZ=False

	Django 1.11 compatibility.

	Added warnings for untested code.

Version 0.3.3

	Fixed issue #147 - compatibility with Django 1.10

Version 0.3.2

	Fixed verify method of IPN/PDT so that it can be re-run in the case
of a PayPal server error.

	Added ‘re-verify’ admin action for IPNs.

	Other IPN admin improvements.

	IMPORTANT: Removed the undocumented and untested item_check_callable
parameter from several IPN and PDT processing functions. You should
implement checks in signal handlers like valid_ipn_received or
other calling code.

	Fixed issue #119 - flagged IPNs not excluded from duplicate checking.

	Fixed issue #126 - documented need to check amount received.

Version 0.3.1

	Better handling of unknown datetime formats, thanks rebwok, PR #137

	Added pytz dependency

Version 0.3

	Dropped support for Django 1.4 and 1.5.

	Fixed crasher with AmbiguousTimeError.

	Better logging for paypal.pro.

	Fixed Django 1.7/1.8 compat for EmailField.

	Added missing migration for PDT model.

	Added missing South migrations

	Fixed max_length of IPN/PDT custom and transaction_subject fields

	Fixed issue #105 [https://github.com/spookylukey/django-paypal/issues/105] - IPN failure when
running under non-English locale

	Added missing fields option_selection1 and option_selection2 to
IPN/PDT

	IMPORTANT: Deprecated the PAYPAL_RECEIVER_EMAIL setting to allow
multiple receiver emails in a single app. This has several consequences for
your code, which must be fixed before upgrading to 0.4.x, when this setting
will be dropped entirely:

	When creating a PayPalPaymentsForm you must provide the business
field in the initial parameter.

	Validation of receiver_email must be done in your valid_ipn_received
signal handler and your PDT processing view. Take into account the fact that
the user can tamper with the form fields before posting them to PayPal.

	The use of the pdt view for PDT payments is deprecated. Now you should
provide your own view and use the process_pdt helper function.

Version 0.2.7

	Small fix to logging, thanks frankier

Version 0.2.6

	Small fixes, including not depending on South.

Version 0.2.5

	Fixed some PayPalIPN DateTimeFields that were not being handled like the rest. Thanks
thiagogds for the patch.

	Fixed PayPalNVP.timestamp field so that it receives timezone-aware datetimes
if you have USE_TZ = True

Version 0.2.4

	Fixed timezone parsing of PalPal data so that PayPalIPN.payment_date and others
are handled correctly (if you have USE_TZ = True).

This does not include a migration to fix old data - see the release notes if
you need that.

	Work-arounds for bugs in the IPN Simulator

	Other small fixes

Regarding the handling of dates: If you want to fix historic data in your IPN
tables, you need to apply a migration like the following:

-*- coding: utf-8 -*-
from __future__ import unicode_literals

import pytz
from datetime import datetime
from django.db import migrations
from django.utils import timezone

PAYPAL_DATE_FORMATS = [
 "%H:%M:%S %b. %d, %Y PST",
 "%H:%M:%S %b. %d, %Y PDT",
 "%H:%M:%S %b %d, %Y PST",
 "%H:%M:%S %b %d, %Y PDT",
]

def parse_date(datestring):
 for format in PAYPAL_DATE_FORMATS:
 try:
 return datetime.strptime(datestring, format)
 except (ValueError, TypeError):
 continue

def fix_ipn_dates(apps, schema_editor):
 PayPalIPN = apps.get_model("ipn", "PayPalIPN")

 for ipn in PayPalIPN.objects.all():
 # Need to recreate PayPalIPN.posted_data_dict
 posted_data_dict = None
 if ipn.query:
 from django.http import QueryDict
 roughdecode = dict(item.split('=', 1) for item in ipn.query.split('&'))
 encoding = roughdecode.get('charset', None)
 if encoding is not None:
 query = ipn.query.encode('ascii')
 data = QueryDict(query, encoding=encoding)
 posted_data_dict = data.dict()
 if posted_data_dict is None:
 continue

 for field in ['time_created', 'payment_date', 'next_payment_date', 'subscr_date', 'subscr_effective',
 'retry_at', 'case_creation_date', 'auction_closing_date']:
 if field in posted_data_dict:
 raw = posted_data_dict[field]
 naive = parse_date(raw)
 if naive is not None:
 aware = timezone.make_aware(naive, pytz.timezone('US/Pacific'))
 setattr(ipn, field, aware)
 ipn.save()

class Migration(migrations.Migration):

 dependencies = [
 ('ipn', '0003_auto_20141117_1647'),
]

 operations = [
 migrations.RunPython(fix_ipn_dates,
 lambda apps, schema_editor: None) # allowing reverse migration is harmless)
]

Version 0.2.3

	Fixed various deprecation warnings when running under Django 1.8

Version 0.2.2

	Added ‘commit’ kwarg to express_endpoint_for_token()

Version 0.2.1

	Added PayPalNVP.response_dict attribute.

	Added PayPalFailure.nvp attribute to get full info

	Switched to using requests library for HTTP calls.

Version 0.2

	Introduced new, less confusing signals, and deprecated the old ones. This is
a bit of an API overhaul, but the migration path is clear, don’t worry!

	IPN:

Previously, there were IPN signals like payment_was_successful which
fired even if the payment_status on the IPN was 'Failed', and there
were other signals like payment_was_refunded to cover other specific
statuses, but not all of them. There were also bugs that meant that some
signals would never fire.

To sort out all these issues, and to future proof the design, the signals
have been reduced to:

	valid_ipn_received

	invalid_ipn_received

The ‘invalid’ signals are sent when the transaction was flagged - because of
a failed check with PayPal, for example, or a duplicate transaction ID. You
should never act on these, but might want to be notified of a problem.

The ‘valid’ signals need to be handled. However, you will need to check the
payment_status and other attributes to know what to do.

The old signals still exist and are used, but are deprecated. They will be
removed in version 1.0.

Please see Using PayPal Standard IPN.

	Pro:

This used signals even though they weren’t really appropriate.

Instead:

	If you are using PayPalWPP directly, the returned PayPalNVP objects
from all method should just be used. Remember that you need to handle
PayPalFailure exceptions from all direct calls.

	If you are using the PayPalPro wrapper, you should pass a callable
nvp_handler keyword argument.

Please see Using Website Payments Pro.

	You must explicitly set PAYPAL_TEST to True or False in your
settings, depending on whether you want production or sandbox PayPal. (The
default is True i.e. sandbox mode).

The sandbox() method on any forms is deprecated. You should use render
and set PAYPAL_TEST in your settings instead.

Version 0.1.5

	Fixed support for custom User model in South migrations

If you:

	are using a custom AUTH_USER_MODEL

	are using the ‘pro’ app

	installed version 0.1.4 and ran the migrations,

you will need to reverse the migrations in the ‘pro’ app that were applied
when you ran “./manage.py migrate”.

Version 0.1.4

	New docs!

	Python 3 support.

	Django 1.7 support.

	Support for custom User model via AUTH_USER_MODEL. If you change AUTH_USER_MODEL
you will still need to write your own migrations.

	Support for all possible ‘initial’ options that could be wanted in PayPalStandardForm

	Support for PayPalPro CreateBillingAgreement method

	Support for PayPalPro DoReferenceTransaction method

	Upgraded to PayPal Pro API version 116.0

	This deprecates the “amt” parameter for SetExpressCheckout and
DoExpressCheckoutPayment. paymentrequest_0_amt should be used instead. Use
of amt will raise a DeprecationWarning for now.

	Various bug fixes, refactorings and small features.

	Removed PDT signals (which were never fired)

Version 0.1.3

	Missing payment types added

	Additional signals:

	payment_was_refunded

	payment_was_reversed

	Django 1.6 compatibility

	Various bug fixes, including:

	Fixes for non-ASCII characters

 Update the database

Update the database

django-paypal uses the built in Django migrations framework.

To update your database:

./manage.py migrate

If you using or upgrading from much older versions of Django (e.g. before 1.7
which didn’t have a built in migrations framework), please upgrade to
django-paypal 0.5.x first and follow the docs found in that version.

 Settings

Settings

Some settings are documented on other documentation pages. In addition, you can
set the following values in your settings.py to customise the behaviour of django-paypal.

	
PAYPAL_BUY_BUTTON_IMAGE

	The URL of the image to be used for ‘buy’ buttons.

	
PAYPAL_DONATE_BUTTON_IMAGE

	The URL of the image to be used for ‘donate’ buttons.

	
PAYPAL_SUBSCRIPTION_BUTTON_IMAGE

	The URL of the image to be used for ‘subscription’ buttons.

 Index

Index

 _
 | C
 | D
 | E
 | G
 | M
 | P
 | S
 | U

_

 	
 	__init__() (paypal.pro.helpers.PayPalWPP method)

C

 	
 	createBillingAgreement() (paypal.pro.helpers.PayPalWPP method)

 	
 	createRecurringPaymentsProfile() (paypal.pro.helpers.PayPalWPP method)

D

 	
 	doDirectPayment() (paypal.pro.helpers.PayPalWPP method)

 	
 	doExpressCheckoutPayment() (paypal.pro.helpers.PayPalWPP method)

 	doReferenceTransaction() (paypal.pro.helpers.PayPalWPP method)

E

 	
 	express_endpoint_for_token() (in module paypal.pro.helpers)

G

 	
 	getExpressCheckoutDetails() (paypal.pro.helpers.PayPalWPP method)

 	
 	getTransactionDetails() (paypal.pro.helpers.PayPalWPP method)

M

 	
 	manageRecurringPaymentsProfileStatus() (paypal.pro.helpers.PayPalWPP method)

P

 	
 	PAYPAL_BUY_BUTTON_IMAGE

 	PAYPAL_DONATE_BUTTON_IMAGE

 	
 	PAYPAL_SUBSCRIPTION_BUTTON_IMAGE

 	PayPalNVP (class in paypal.pro.models)

 	PayPalWPP (class in paypal.pro.helpers)

S

 	
 	setExpressCheckout() (paypal.pro.helpers.PayPalWPP method)

U

 	
 	updateRecurringPaymentsProfile() (paypal.pro.helpers.PayPalWPP method)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-paypal’s documentation!

 		
 Install

 		
 Overview

 		
 PayPal Payments Standard

 		
 Using PayPal Standard IPN

 		
 Testing

 		
 Simulator testing

 		
 See also

 		
 Using PayPal Standard PDT

 		
 IPN/PDT variables

 		
 Using PayPal Standard with Subscriptions

 		
 Using PayPal Standard with Encrypted Buttons

 		
 Using PayPal Payments Standard with Encrypted Buttons and Shared Secrets

 		
 Using Website Payments Pro

 		
 Website Payments Pro models and helpers

 		
 Tests

 		
 Release notes

 		
 Version 1.1.2 (2021-12-13)

 		
 Version 1.1.1 (2021-04-08)

 		
 Version 1.1 (2021-03-14)

 		
 Version 1.0 (2019-03-22)

 		
 Version 0.5.0

 		
 Version 0.4.1

 		
 Version 0.4.0

 		
 Version 0.3.6

 		
 Version 0.3.4

 		
 Version 0.3.3

 		
 Version 0.3.2

 		
 Version 0.3.1

 		
 Version 0.3

 		
 Version 0.2.7

 		
 Version 0.2.6

 		
 Version 0.2.5

 		
 Version 0.2.4

 		
 Version 0.2.3

 		
 Version 0.2.2

 		
 Version 0.2.1

 		
 Version 0.2

 		
 Version 0.1.5

 		
 Version 0.1.4

 		
 Version 0.1.3

 		
 Up